
-RiotI 69 ALTERING THE APPLICATION OF THE TRADITIONAL SYSTEMS /
DEVELOPMENT LIFE CYCL (U) AIR COMMAND AND STAFF COLL
MAXNELL AF8 AL M L CHASE APR 87 ACSC-87-9485

UNCLASSIFIED F/G 1215 W

EEEEE00000EE000E
mEEEEEEEEEEEEE

*~ *2.8 BIll 2.5Bifi - ____ _____

_______ ~ Q~ 2.2-L -
L 136140 111112.0

HHI _______

flj I' 1.25 flfl 1.4 Q~fl 1.6

p

~4

w i~' 'V w ~ V 4W W V ~w. V 4W--. -4W

FI~ LE Copy

0

45V

AIR COMMAND
AND

STAFF COLLEGE

STUDENT REPORT
ALTERING THE APPLICATION OF THE TRADITIONAL
SYSTEMS DEVELOPMENT LIFE CYCLE FOR AIR FORCE

::z SOFTWARE PROGRAMS

MAJOR MICHAEL L. CHASE 87-0485

A. A

DISCLAIMER

* The views and conclusions expressed in this
document are those of the author. They are
not intended and should not be thought to
represent official ideas, attitudes, or
policies of any agency of the United States
Government. The author has not had special
access to official information or ideas and

has employed only open-source material
'- available to any writer on this subject.

This document is the property of the United
States Government. It is available for
distribution to the general public. A loan
copy of the document may be obtained from the
Air University Interlibrary Loan Service
(AUL/LDEX, Maxwell AFB, Alabama, 36112) or the
Defense Technical Information Center. Request
must include the author's name and complete
title of the study.

This document may be reproduced for use in
other research reports or educational pursuits
contingent upon the following stipulations:

-- Reproduction rights do not extend to
-'"any copyrighted material that may be contained

in the research report.

-- All reproduced copies must contain the
following credit line: "Reprinted by
permission of the Air Command and Staff
College.

-- All reproduced copies must contain the
name(s) of the report's author(s).

-- If format modification is necessary to
better serve the user's needs, adjustments may
be made to this report--this authorization
does not extend to copyrighted information or
material. The following statement must

.. , accompany the modified document: "Adapted
-'- from Air Command and Staff Research Report

(number) entitled (title) by
(author)

-- -- This notice must be included with any
reproduced or adapted portions of this
document.

--* . '* *--.

. .. *.- -

REPORT NUMBER 87-0485

TITLE ALTERING THE APPLICATION OF THE TRADITIONAL SYSTEMS

DEVELOPMENT LIFE CYCLE FOR AIR FORCE SOFTWARE PROGRAMS

AUTHOR(S) MAJOR MICHAEL L. CHASE, USAF

FACULTY ADVISOR MAJOR TERRY BROOKS, 3823 ACSC STUS

SPONSOR MR. JOHN D. HENNE, GM-13, HQ SAC/DOCR

Submitted to the faculty in partial fulfillment of
requirements for graduation.

AIR COMMAND AND STAFF COLLEGE

AIR UNIVERSITY

MAXWELL AFB, AL 36112

,Iz

UNCLASSIFIED
SECUNITY CLASSIFICATION OF THIS PAGE -' L I '

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE

2*. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

87-0485
6. NAME OF PERFORMING ORGANIZATION 5b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(if applicable)

ACSC/EDCC

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Maxwell AFB AL 36112-5542

Go, NAME OF FUNDING/SPONSORING _8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Bc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO

11. TITLE (inciude Security Classification)

ALTERING THE APPLICATION OF THE TRADITIONAL
12. PERSONAL AUTHOR(S)

Chase, Michael L., Major, USAF
t31. TYPE OF REPORT 13b. TIME COVERED 74. DATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNTFROM TO 1987 April 36
16. SUPPLEMENTARY. NOTATION

ITEM 11: SYSTEMS DEVELOPMENT LIFE CYCLE FOR AIR FORCE SOFTWARE PROGRAMS
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB. GR. .

19. ABSTRACT (Continue on reverse if necessary and identify by block number
,The military strategy of the United States depends heavily on maintaining a qualitative
superiority over any and all potential adversaries. By maintaining this qualitative
superiority the US is able to compensate for a wide variety of real or perceived short-
comings present in its military forces.. This dependence has resulted in an increased
emphasis on advanced technology and its associated software programming. The integrity
and responsiveness of our software is being jeopardized by its high costs and an ever
growing shortage of qualified software professionals. Although programs life the DoD's
STARS. program have recognized these problems, progress has been slow to reverse the trend.
One area that deserves closer examination is the process the Air Force uses to conceive,
develop, and implement its software. This process is known as the traditional systems
development life cycle. This project will examine in detail the traditional life cycle,thE
factors affecting it, its economic foundations, and most importantly ways in which it
might be altered.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED C SAME AS RPT. 1DTIC USERS C UNCLASSIFIED
22&. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

(inctude Area Coder

ACSC/EDCC Maxwell AFB AL 36112-5542 (205) 293-2483

DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

%:,; ". ; , , .:, ,:. '.'.:... ,...., , .e... %. .. %._... ..e..

"___PREFACE
The military strategy of the United States, particularly in

the arena of deterrence, depends heavily on maintaining a
qualitative superiority over any and all potential adversaries.
By maintaining this qualitative superiority the US is able to
compensate for a wide variety of real or perceived shortcomings
present in its military forces. This dependence has resulted in
an increased emphasis on advanced technology, and its associated
software programming. This has made software one of the most
critical links in our military armor. However, the integrity and
responsiveness of our software programming is being jeopardized
by its high costs and an ever growing shortage of qualified
software professionals.

Although programs like the DoD's Software Technology for
Adaptable, Reliable Systems (STARS) have recognized the problems
associated with software programming, progress has been slow to
reverse the trend. Additional action must be taken to rectify
the situation and increase the productivity of Air Force software
programs. One area that deserves closer examination is the
process used to conceive, develop, and implement software
programs. This development process has been used since the
earliest days of software programming and is generally known as
the traditional systems development life cycle. While technology
has been improving by leaps and bounds, the software development
process has remained relatively static.

This project will examine in detail the traditional systems
development life cycle, the factors affecting it, its economic
foundations, and most importantly ways in which it might be
altered. Altering the traditional systems development life cycle
may be one of the only cost effective ways to improve the
productivity of Air Force software programs. The consequences of
failing to increase the productivity and reliability of our
software programs is extremely grave and could have dire effects
on Air Force readiness and US defense capabilities. .p. -

#J

a 2 5

iii C

F ~ ' p - -. -

___ __ ___ __ ABOUT THE AUTHOR _ _ _ _ _ _ _

Major Michael L. Chase (B.S., United States Air Force Academy;
M.B.A., University of North Dakota) has had extensive experience
working with computer hardware and software. He has served as
Chief, Management Information Systems for the Deputy Chief of
Staff, Operations, Strategic Air Command, Of futt AFB, Nebraska.
In this capacity he was the Senior Systems Analyst assigned to
the Systems Integration Division, working the integration of all
automation systems for SAC Operations. His primary area of
expertise was working requirements definitions and long range
planning. He also served as Special Assistant to the SAC Deputy
Chief of Staff for operations, advising him on all automation
related initiatives. In this capacity he managed the
acquisition, development, and maintenance of hardware and
software for computer systems used throughtout the SAC Operations
community. Major Chase is a distinguished graduate of the USAF
Academy and winner of the Oliver LaGorce Award, given to the
Outstanding Cadet in Geography. A distinguished graduate from
Undergraduate Pilot Training, he was also awarded the ATC
Leadership Award. He was a distinguished graduate of Squadron
Officer School, and was a recipient of both the Wing Outstanding
Achievement Award and Section Outstanding Contributor Award. He
has also completed both Air Command and Staff College and
National Security Management by correspondence.

.

iv

II

TABLE OF CONTENTS

Preface iii
About the Author .. iv
List of Illustrations ... vi
Executive Summary ... vii

CHAPTER ONE - INTRODUCTION o...... 1
The Traditional System Development Life Cycle............ 2
Definition of Phases..... 3
Additional Software Development Problems................. 4
Summary.......... 6

CHAPTER TWO - THE AIR FORCE'S APPLICATION OF THE TRADITIONAL
SYSTEMS DEVELOPMENT LIFECYCLE................................ 7

Summary... 8

CHAPTER THREE - COST CURVES, COST ESTIMATES, AND THE LIFE
CYCLE DEPICTED- 9

The Cost Curve ... 9
Error Detection .. 10
Time Sensitivity o..........o..........o................. 11

Overlooked Factors in Time (Cost) Estimates........o..... 12
User Satisfaction o............................. 13

Manpower Tradeoffs. 14
Software Maintenance o.. 14
Summary..........o..................................... 15

CHAPTER FOUR - ALTERING THE SYSTEMS DEVELOPMENT LIFE CYCLE.... 16
Results of Analysis..................... ooo. 16
Altering the Traditional System Development Life Cycle... 17
The Modular Approach....... 18
Summary.. o....... 20

CHAPTER FIVE - BENEFITS OF USING AN ALTERED SYSTEMS
DEVELOPMENT LIFE CYCLE 21

Impacts of Using A Modular Design 21
Summary.. 23

CHAPTER SIX - CONCLUSIONS AND RECOMMENDATIONS 24
CONCLUSIONS.. 24
Recommendations.,.... o... 25

BIBLIOGRAPHY.o..... 26

v
;V - : . . ; . . . ::V

____ ____ ___LIST OF ILLUSTRATIONS _ _ _ _ _ _

TABLES

TABLE 1 -- Time-Sensitivity as a Function of System Size 12

FIGURES

FIGURE 1 -- Relative Costs of Hardware and Software 2
FIGURE 2 -- The Cost Curve of Software Developmnent 9
FIGURE 3 -- Gantt Chart Depicting the Traditional

Life Cycle .. 10
FIGURE 4 -- The High Cost of Late Fixes 11
FIGURE 5 -- The Life Cycles Depicted 18

Cvi

EXECUTIVE SUMMARYA

Part of our College mission is distribution of theA
students' problem solving products to DoD

Ssponsors and other interested agencies to

enhance insight into contemporary, defense3 .1 ~ related issues. While the College has accepted this
product as meeting academic requirements for
graduation, the views and opinions expressed or

4N implied are solely those of the author and should
not be construed as carrying official sanction.

-"insights into tomorrow"

* REPORT NUMBER 87-0485

AUTHOR(S) MAJOR MICHAEL L. CHASE, USAF

* TITLE -ALTERING THE APPLICATION OF THE TRADITIONAL SYSTEMS
DEVELOPMENT LIFE CYCLE FOR AIR FORCE SOFTWARE PROGRAMS

I. Purpose: To establish the requirement for altering the
traditional systems development life cycle and show that the use
of a modular design will provide increased productivity and
reduced software costs.

II. Problem: The military strategy of the United States to rely
on qualitative superiority to maintain deterrence has placed an
increased emphasis on high technology and its associated software
programming. However, the integrity and responsiveness of the
Air Force's software programming efforts are being jeopardized by
its high costs and an ever growing shortage of qualified
programmers, software project managers, and systems analysts.

III. Discussion: The importance of software to any military
.4- electronics system extends far beyond its functional role. The

cost, reliability, and time required to field new systems are
increasingly determined by software rather than hardware
considerations. The cost of software to the DoD is currently $10
billion a year and is expected to increase to $30 billion by
1990. Software costs account for 5 percent of the Air Force
budget, and are expected to climb to 10 percent by 1990.
Additionally, software costs can exceed upward of 80 percent of
the total system cost. Likewise, the demand for software
professionals currently outstrips supply pipelines and has every
indication of becoming a more intense problem. Since the demand
for software and software professionals is not expected to

vii

___________CONTINUED___________

diminish, something must be done to improve the productivity and
timeliness of Air Force software programs. One area that
deserves closer examination is the process the Air Force uses to
conceive, develop, and implement its software; a process that has
remained relatively static since the early 1960s. Analysis of
the phases of the life cycle process has shown that many factors
impact software development. Among the primary factors are
manpower, time control, early error detection, and a lack of

* .. overlap of the phases. While several different things may be
done to improve the efficiency of the traditional systems
development life cycle, the optimal solution may be the use of a
modular design. Modular design is the dividing of a program into
smaller segments, each of which evolves through the six phases of
the life cycle. A module, however, is capable of functioning in

'A a stand-alone mode. Each module builds onto previously
implemented modules, and when all modules are implemented, they

- deliver the same capabilities and functions as the product
developed using the traditional approach. Two modular designs
are offered for consideration; a straight design where each
module is completed before the following module is started or an
overlap design where the next module is started before the
previous one is completed. Either of the designs provides a

-~ degree of flexibility not attained under the traditional systems
development life cycle, while delivering fairly significant time
and cost savings.

IV. Conclusions: A modular design provides not only increased
productivity and product quality, it can also produce cost
savings of up to 10-15 percent. Additionally, it can also
provide many intangible benefits; such as meeting the demand for
increased time control, reduction of system changes, early
detection of errors, reduced program size, reduction of
1,1aintenance costs, and increased programmer proficiency. All of
which can improve the readiness of tomorrow's Air Force.

V. Recommendations: The Air Force must implement modular design
wherever possible. This means evaluating programs currently
being developed or in the process of being implemented, as well as
future projects. Whenever possible manpower estimates and cost
estimates should be based on modular design parameters. The Air

'V. Force must also develop and conduct training in modular design
for all programmers, software project managers, and systems
analysts.

V*P viii

Chapter One

INTRODUCTION

The military strategy of the United States to rely on
qualitative superiority to maintain deterrence has placed an
increased emphasis on high technology and its associated software
programming. However, the responsiveness and integrity of the
Air Force's software programming efforts are being jeopardized by
their high costs and an ever growing shortage of qualified
programmers, software project managers, and systems analysts.
Although programs like the DoD's Software Technology for
Adaptable, Reliable Systems (STARS) have recognized the problems

* associated with software programming, progress has been slow to
reverse the trend (14:--).

The importance of software to any military electronics
system extends far beyond its functional role. The cost,
reliability, and time to field new systems is increasingly
determined by software rather than hardware considerations.
Software costs can exceed upward of 80 percent of the total
system costs for some military electronics programs (6:13). The
DoD is currently spending $10 billion a year on computer software
and anticipates the demand to triple to $30 billion by 1990

*(8:46). At $3 billion a year, spending for software accounts for
five percent of the total Air Force budget, and is expected to
climb to ten percent of the budget by 1990 (8:46).

'S...Likewise, the demand for software professionals
(programmers, project managers, and systems analysts) currently
outstrips our supply pipelines and has every indication of
becoming a more intense problem (8:46). Since it is highly
unlikely that future systems will have reduced software
requirements, other means of improving system performance must be
developed. One area that deserves closer examination is the
software development process. Better known as the software
development life cycle, it is the set of activities that defines
and describes how software is conceived, developed, and
implemented. Since most software professionals utilize the same

* basic steps to define this development life cycle it is often
referred to as the traditional systems development life cycle.

The purpose of this paper is to investigate this traditional
systems development life cycle and determine whether altering the
life cycle can provide economic benefits and increased
productivity to the Air Force. This study will consist of an
examination of the traditional system development life cycle; the

J%

Air Force's application of that life cycle; the way the life
cycle is depicted and how its costs are determined; some possible
ways in which the life cycle might be altered; and finally the
benefits of using an altered systems development life cycle. The
consequences of failing to increase the productivity of Air Force
software programs is extremely grave and can have dire effects
on Air Force readiness and US defense capabilities.

THE TRADITIONAL SYSTEMS DEVELOPMENT LIFE CYCLE

With virtually all major Air Force electronic systems
depending on computer software, it is absolutely essential that
cost, quality, and productivity be optimized. According to Col.
Kenneth Nidifer, Director of Mission-Critical Computer Programs
for Air Force Systems Command, "Software has become a highly
important force multiplier, even though this is difficult to
express in terms of bombs on target. the very security of our
nation depends on software" (8:46). While technology is lowering

4 the cost of computer hardware, the sophistication of the tasks
that software is called upon to perform is escalating the basic
cost of software. Figure 1 illustrates how software costs, as a
percentage of total systems costs, have been rising for DoD
computer systems for the period 1955 to 1985 (18:13-14).

100

-1:

HARD WARE

50

PERCENT

SOFTWARE

1955 1965 1975 1985

FIGURE 1. RELATIVE COSTS OF HARDWARE AND SOFTWARE

.

2

Definition of Phases

While software programming is critical to each computer
system, the various phases of the software development process
are not universally defined. Since the purpose of this paper is
to determine how the systems development life cycle can be
altered, a common ground must be established. What follows are
this author's definitions of the various phases of the
traditional systems development life cycle. The phases are a
synthesis of the many phase descriptions available in computer
literature, with major influence from the Planning Guide for
Computer Program Development. The life cycle consists of six
phases: 1) requirements definition, 2) specifications, 3) design
and coding, 4) testing, 5) integration, and 6) implementation and
maintenance (4:17-28). The description of each phase is listed
below.

Requirements Definition

This phase includes the effort required to define and
analyze the requiremeaits for a software system, establish a
software system description,-and initiate the software
development planning necessary to proceed with further
development of the software system. This step may be repeated
several times to ascertain that the true requirements are or have
been stated and understood.

Specifications

This phase includes the effort required to convert the
system requirements definition into a design; prepare a
development plan that documents the cost, system performance
specifications, and schedule estimates; as well as prepare a test
plan. The preliminary design of the system is outlined. The
user decides whether or not to proceed with the development of
the software program at the conclusion of this phase.

Design and Coding

Following user acceptance of the system specifications, the
design and coding of the software program begins. Actions could
include logic flow diagrams, interfaces, data interchanges, data
bases, files, records, and speeds; all of which are formulated
and specified. Coding of the computer program is done during
this phase, which results in translating the rather specific
program requirements into appropriate sets of instructions.

Testing

This phase includes the effort required to support system
testing and acceptance testing. The purpose of this phase is to
ensure the system is in compliance with the stated system
specifications.

3

'nS- , -- -* K % %V

Integration

This phase includes all efforts required to verify that the
software system is in compliance with all project objectives, all
deliverable items exist, and all reviews have been successfully
completed. It usually includes real-time testing of all
functions, to include stand alone operations which insure the
system operates in and of itself. This phase also includes any
efforts to incorporate the software with other packages or
programs already in e xistence.

Implementation and Maintenance

In this phase system testing is completed, end users are
trained, and the user organization is converted to the new
software system. The software maintenance portion consists of
correcting errors, making modifications, and enhancing system
capabilities.

An important aspect of the software development process is
evident from these descriptions--software is essentially a one
time process. when a computer program has been developed (per
these phase descriptions), the program and hence the software
does not have to be "manufactured." The system is ready to
function; with only modifications, enhancements, or corrections
to be made. No additional development effort is required to make
the software functional. As will be shown in Chapter Two, the
Air Force uses a version of the traditional systems development
life cycle to develop its software programs. The traditional
life cycle has been incorporated into every facet of Air Force
software development and has been utilized for over two decades.
There are several additional problems; however, beyond the
previously mentioned manpower and dollar shortages, that need to
be considered and resolved. These problems are equally as
significant in triggering a search to determine whether the
systems development life cycle can or should be altered. These
problems have surfaced in various research studies, as well as
from the author's personal experience.

ADDITIONAL SOFTWARE DEVELOPMENT PROBLEMS

Automated Code Generation

Although automated code generation has increased the
productivity of the coding process, and in many cases the

* maintenance function, reliance on automated code generation does
not eliminate erroneous specifications. A research study by B.
W. Boehm has shown that only 30 percent of post-delivery
discrepancies occurred as a result of coding errors; the
remaining 70 percent where caused by an erroneous design or
specification (7:126). A study at GTE found that over 50 percent
of all development hours were spent correcting errors resulting
from faulty design (9:240). Automated code generation is fine

4

- -- - --- W w ~ r w r

when utilized correctly, but reliance on it often leads to other
errors that must be overcome.

Software Packages

Software packages often require major modifications, long-
term commitments, hardware restrictions, and a forfeiture of
flexibility. A recent GAO report to Congress showed an unusually
large number of software packages are never implemented, and that
those which do get implemented, are often delivered late, with
excessive cost overruns (15:1-84).

Software Programmers

Programmers believe the reports which state good programmers
produce 20-25 lines of debugged code per day (6:304-305). Long-
term estimates easily become self-fulfilling prophecies. Slipped
schedules have become the fashionable approach to increasing
project manpower.

Manpower Impacts

While beefing up project manpower is used to bring a
floundering project back on schedule, project leaders grossly
underestimate the cost of adding programmers during the latter
stages of program development.

Computer Jocks

Computer "jocks" design systems for computer "jocks"; users
are not "jocks"! The operation of software programs needs to be
understood by the end user, which is often impossible-because of
the way the program is designed and developed.

Development Philosophy

The philosophy that "there is not enough time to do it right
today but plenty of time to fix it tomorrow," has caused
considerable rework as well as a loss of user confidence in early
release stages. Time constraints and productivity goals often
force quality to be a secondary concern.

Systems Analysts

The systems analyst has a difficult time differentiating
between user needs, wants, and dreams in trying to determine
system requirements. The lack of formal "computer" education or
relevant experience in the area of system's analysis has often
led to a misdirected effort.

5

'se

A SUMMARY

The Air Force is dramatically increasing the amount of money
it is willing to spend on software development, yet something
must be done to meet the demands for increased productivity.
While the sophistication of tasks software performs has increased
dramatically, the Air Force is still using an antiquated approach
to software development. This approach was used when our most
powerful computers had performance capabilities that are less
than today's desktop computers. Just as those computers have
changed to meet the ever increasing demands of a "high tech"
Air Force, so must the supporting software development process.
This paper will examine that development process and show that
altering it will provide both economic and productivity benefits
to Air Force.

'~. ~6

Chapter Two

THE AIR FORCE'S APPLICATION OF
THE TRADITIONAL SYSTEMS DEVELOPMENT LIFE CYCLE

The previous chapter described the traditional systems
development life cycle and how it has governed the development,
implementation, and maintenance of software systems. This
chapter will describe the Air Force's use of this systems
development life cycle and the program management concepts it has
spawned.

Air Force Regulation (AFR) 700-1 states the Air Force will
"manage information as a critical resource" and "information
systems will be implemented and managed to enhance Air Force war
fighting capability" (12:2). To attain these lofty objectives,
the Air Force has defined every facet of information system
development, acquisition, and implementation. AFR 700-1 defines
an information system as a combination of people, equipment,
facilities, procedures, software, and other resources, organized
to process information (12:2). It does not matter at what
organizational level the information system is being utilized, it
"will be managed according to the principles, policies, and
procedures of life cycle management" (12:5).' This implies the
traditional systems development life cycle will be used to obtain
and maintain effective information systems, at minimum cost, for
the total life of the system. The Air Force's use of life cycle
management principles begins with the conceptual needs
(requirements definition) phase and ends with the disposal or
replacement of the information system.

The Air Force references the systems development life cycle
to provide a framework for the process by which the initial
concept of a system evolves into a fully operational system.
While the Air Force institutes various technical controls,
through reviews and audits, the basic life cycle process remains
fairly consistent with the traditional systems development life
cycle described in the first chapter. AFR 700-4 Vol I, defines
the phases of the life cycle as concept development, definition,
program development, test, and operation (13:8). An analysis of
Figure 1-1, AFR 700-4 Vol 1, shows the purpose of each phase is
very closely aligned with the purposes of the six phases of the

Vtraditional life cycle previously defined (13:7-8). Concept
V development corresponds to requirements definition; definition

with specifications; program development with design and coding;
testing with testing; and operation with integration,
implementation, and maintenance. Figure 3-3, Software

7

Development, APR 700-4 Vol I, further breaks down this life cycle
process and reveals, through an analysis of its baseline
functions, how closely the Air Force systems development life
cycle matches the previously depicted traditional systems
development life cycle (13:19-20).

The purpose for establishing this relationship is to provide
a common ground when discussing characteristics of the
traditional systems development life cycle and the possible ways
in which that life cycle might be altered. Again, it is
important to remember there is no universally accepted definition
of the systems development life cycle, and that the major
differences discussed here are ones of semantics. It is also
interesting to note that the application of the AFR 700-series
regulations is applicable to all systems, whether they are stand
alone or imbedded in larger systems.

During each phase of the systems life cycle, the Air Force
has a single point of management with sufficient authority,
responsibility, and accountability to direct the effective
management of the program. Changes in management normally occur
at prescribed points in the life cycle and since each phase runs
subsequent to the next, have little overlap. The management plan
will be transferred whenever there is a management change and
will be updated with every change to the life cycle plan (12:5).
Under the described Air Force systems development life cycle, as
well as the traditional systems development life cycle, the
process from start to -finish is one long continuous development
program, with delivery of the software system occurring only in
the final step.

SUMMARY

The main point is the Air Force does use a version of the
traditional systems development life cycle to develop its
software programs and has been doing so for several years.
Consequently, almost all of the problems associated with the
traditional systems development life cycle, as uncovered in both
civilian and military studies, would be applicable to either
version of the systems development life cycle. As a result, and
for the purposes of this paper, the two life cycles are
considered the same and interchangeable. The next step is to
accurately depict the traditional systems development life cycle,
including its cost curves and cost estimates, and establish an
economic foundation for altering the traditional systems
development life cycle. This is the purpose of the next chapter.

8

N Chapter Three

COST CURVES, COST ESTIMATES, AND THE LIFE CYCLE DEPICTED

This chapter will develop the economic foundation for
altering the systems development life cycle, establish a baseline
for software development costs, and identify the various factors
affecting software development. The purpose of this chapter is
not to provide an analysis for determining cost estimates but
rather to view cost curves, cost estimates and the life cycle as
a means of highlighting areas for improvement.

THE COST CURVE

As in many other projects, software program managers often
ask: How long will it take? and How much it will cost? Software
development is a dynamic process, and all efforts to depict the
various cost curves will never be totally accurate; however, they
can provide an insight into those areas which might need change.

The first step is to understand the pattern of the cost
curve associated with the software development life cycle.
Figure 2 depicts the generally accepted shape of the cost curve,
with time shown on the horizontal axis and dollars of cost on the
vertical (1:78). Through the first five phases the cost curve
starts out initially high (peaking during design and coding) and
then becomes downward sloping. This downward slope continues
through the implementation phase but begins to climb as
maintenance is required and the system becomes outdated.

p COST

+-------- PHASES 1-5 -------------------- PHASE 6-----------

FIGURE 2. THE COST CURVE OF SOFTWARE DEVELOPMENT

9

Some general observations about this cost curve are: 1) as
the software system life increases, development costs (phases 1-
5) as a percentage of total system cost decrease, and 2) as total
costs increase, the average cost per year that the system is in
operation decreases--up to a point. Additionally, research by
Peter Norden of IBM has shown that each of the six phases has its
own well-defined cost curve (based primarily on manpower costs).
The magnitude and duration of these individual curves are of a
generally stable and predictable structure and can be exploited
for project planning and control (20:1). The pattern of each
smaller curve is in essence a smaller replica of the larger
overall development cost curve. The curves climb, peak, and have
support tails of varying length.

There is virtually no overlapping of any two phases.
Consequently, each phase must be completed before commencing with
the next phase. As a result, any delays which might occur in one
phase very often impact all subsequent phases. This domino
effect exists in many software development efforts and is often a
major cause of program slippages. A graphic way of showing this
aspect of the traditional systems development life cycle is
through the use of a Gantt chart, as shown in Figure 3. The
phases are shown on the vertical axis with time on the horizontal
axis.

REQUIREMENTS X--
SPECIFICATIONS X ---- X
DESIGN/CODING X ------------ X
TESTING X ----- X
INTEGRATION X---X
IMPLEMENTATION X ------- X

FIGURE 3. GANTT CHART DEPICTING THE TRADITIONAL LIFE CYCLE

ERROR DETECTION

One major cause of the above mentioned delays is the
correcting of errors, better known in computer circles as
"debugging." James Martin, in his book An Information Systems
Manifesto, graphically shows how costs to correct errors sharply
escalate as they pass from the requirements definition phase
through to the implementation and maintenance phase (5:48).
Figure 4 depicts this sharply rising cost curve. Martin states
it could more than 1000 times more cost-effective to detect and
correct errors in the requirements definition phase than in the
implementation/maintenance phase. Further, the author's
personal experience has shown that errors are often detected out-
of-phase. Errors which occur in phase 1 (requirements
definition) are often not detected until phase 6 (implementation

10

and maintenance), likewise errors in phase 2 (specifications) are
not detected until phase 5 (integration), and phase 3 (design and
coding) until phase 4 (testing). More specifically, design and
coding errors are often caught in the test phase as the program
simply will not function, where as errors in requirements
definition may not be detected until the system is implemented.

COST

PHASE(S) 1 2 3 4 5 6

FIGURE 4. THE HIGH COST OF LATE FIXES

TIME SENSITIVITY

Eack) of the cost curves and figures discussed thus far has
been directly related to time and that is not by accident. Time
plays a critical role in the software development process.
Schedule stability is often described as the most critical
problem in software development. Software development is very
time-sensitive, and development time specification is not the
prerogative of management (as most of management believes), but
rather belongs to the system (6:8). Management can iterate
constraints and define a feasible schedule, but it can not always
dictate the time for completion of a project. To get some idea
of the time-sensitivity of software development, consider Table
1, generated by Lawrence Putnam-in his study of software cost
estimating. Using a simulation model, he was able to show time-
sensitivity as a function of system size. Additionally, he
stated this analysis could be used to describe any typical
government software project (6:8-9).

%S

LINES TIME(MONTHS) STD DEV MAN-MONTHS EFFORT STD DEV

15,000 12.9 0.6 34.7 6
50,000 21.6 1.1 376.5 60
100,000 29.1 1.4 992.9 152
250,000 43.1 2.1 3188.2 498
500,000 57.9 2.8 7782.3 1204

TABLE 1. TIME-SENSITIVITY AS A FUNCTION OF SYSTEM SIZE

What the table reflects is a very narrow time window. For
example, a 15,000-line program has a standard error of 0.6 month.
If management had set the time for completion at one year, it
would require 0.9 month of excess time to be completed. In this
case the probability of successful completion is only 7 percent
(6:8). For a one year project some managers and users would
accept a one month delay, but the case of the larger project is
different. With a system having 500,000 lines of code, it would

* be very hard for management to guess 57.9 months for completion
and 7782 man-months of effort. Because of cost and time
considerations, many project managers would be more inclined to
pick 48 months rather than 60 months, knowing there is a better
chance of getting funded. Yet, 48 months is virtually
impossible, as the probability of success is less than 1 percent
(6:9). What-this means is, if the development time is
arbitrarily specified by managerial fiat, there is often a high
chance the project will not meet its time or cost schedules.

Basic statistics further support this conclusion by saying
in most cases the farther into the future a forecast or
prediction is made, the less reliable the predication will be
(3:89). In the case of software development, the author believes
these predictions would more likely be inaccurate on the side of
taking even more time to complete the project. The GAO report
supports this position by showing a large number of government
software programs are plagued with late deliveries and cost
overruns (15:1-84). The only acceptable solution to this
management dilemma is to set realistic time estimates and bias
them for risk; or decrease the time of the project. The shorter
the time element, the less the risk and the more reliable the
estimate. Hopefully this study will show that altering the
traditional life cycle can provide that opportunity.

OVERLOOKED FACTORS IN TIME (COST) ESTIMATES

While many studies have been made on how to improve the
accuracy of the above mentioned time estimates, there are several
factors which are very often overlooked or not considered when
making time estimates. They are mentioned here; however, because

12

-S m - . m-

they have a definite impact on the reasons why the development
life cycle should be altered and better yet, how it might be
altered. The factors mentioned are primarily drawn from the
author's personal experience and reflect areas which are
necessary for more accurate estimates. The common formula for
project estimates can be boiled down to: Contribution Level x
Productivity x Number of Team Members = Effective Project Manning
(11:9). Contribution level is the percent of a programmer's time
to be spent on the project. Productivity level is the percent of
a programmer's time that can be expected to be spent at work and
not on leave or other non-project related activities.

The author believes, however, the common formula needs to
address at least four other factors which are necessary for
reliable time estimates. First is proficiency level, which
characterizes the ability of assigned personnel to perform a
given task. If appropriately expressed as a percentage, it could
fit in well with the formula expressed above. Second is team
turnover rate, which indicates the training and subsequent
contribution of team member replacements. 'The turnover rate must
be a function of time remaining until project completion. New
team replacements immediately prior to implementation would have
significantly more negative impact on the project progress than
early turnover if all other variables are held constant. Third
is a factor reflecting team addition rate, which represents an
adjustment for personnel added to a team after specifications
have been gathered. This adjustment may explain why additional

* manpower for floundering projects does not always produce the
anticipated expeditious results. Finally a cohesiveness factor,
which quantitatively describes the ability of team members to
work together. In turn, cohesiveness facilitates optimal
communication and assistance. Not only are the above four
factors difficult to anticipate, little if any research is
available for determining the direct impact they have. While
this study will not address integrating these factors in with the
standard estimating formula, it might show how altering the
traditional life cycle can satisfy these concerns.

USER SATISFACTION

The purpose of any software development project is to
* develop software that meets the end user's requirements; however,
*the real question is: What is user satisfaction? My research

has shown that meeting original requirements does not, in many
cases, equal user satisfaction; rather original requirements plus

%: changes more closely equals user satisfaction. In software
development, changes are usually a function of development time
and/or system dynamiticity. while it is difficult if not
impossible to control system dynamiticity, development time can
perhaps be controlled. If the time from requirements definition
to implementation could be reduced, changes might be minimized.
Minimizing changes can result in a product which would more
nearly meet original user requirements. Additionally, rework

13

r I

could be significantly reduced, and a product could be delivered
that directs future changes rather than incorporating them.

MANPOWER TRADEOFFS

A majority of the costs associated with software development
are manpower costs. The pattern of the manpower curve in a
traditional software development life cycle is basically the same
as the previously mentioned cost curve (manpower costs are the
primary costs in most software development programs). This
pattern is best known as a Rayleigh manpower curve. The
parameters describing the Rayleigh equation can be arranged to
provide an effort-time (manpower) trade-off law (6:43). This
trade-off law states that small changes in development time
result in very large changes in effort. As the number of people
who must interact and work together on a project rises
arithmetically, the number of interactions goes up geometrically.
This results in more and more time being spent on human

4 communication and less and less on productive work (6:35-. 3)1.
The two ways to handle this problem are to limit the number of
people working on a project at any one time, which will stretch
out the time schedule; or to reduce the size of the project. if
altering the life cycle could reduce development time,
significant manpower costs and development costs savings might be
attained. Again, time plays an all important factor.

SOFTWARE MAINTENANCE

Another area that plays an important role is the maintenance
portion of the life cycle. Maintenance costs, when depicted as a
percentage of the total system cost, increase with each year the
system is in operation. Maintenance costs can be expected to
consume up to 50-75 percent of the total system cost (19:vii).
Edmund Daly found maintenance costs represented about 12 percent
of the system cost in the first year and 46 percent after four
years (9:236). Because maintenance costs do consume such a large
percentage of total cost, a brief examination of these costs is
appropriate. Additionally, maintenance enhancements are also
subject to development approaches.

Software cannot be maintained because it is not subject to
dilapidation or deterioration. Software does not require
preventive or remedial maintenance and it does not have hardware
maintenance characteristics. E.B. Swanson expressed it best when
he identified three basic categories of maintenance (21:492).

Corrective--repairing an undetected error or specification.

Adaptive--modification necessitated by a changing
environment.

Perfective--improving performance capabilities.

14

Z"%'

It should be noted that corrective action is also part of
the test phase, and corrective action is necessitated by human
error. Adaptive and perfective changes are part of the
development process. Adaptive and perfective changes are a
function of the dynamiticity of the software program, which with
longer periods of development time increases the size of the task
to be completed. The implication is clear; the satisfaction of a
maintenance request could be enhanced by time limitations on the
development process. To understand the impact of maintenance
changes, consider Daly's findings at GTE. Some programs had as
much as 70 percent of the original code changed in the first two
years of maintenance, and there were instances where the average
life of a line of code was only 18 months (9:240). Again,
altering the traditional life cycle might provide opportunities
to address these issues and resolve some of these problems.

SUMMARY

The purpose of this chapter was to define and analyze the
software development process and its associated cost curves, and
to build an economic foundation for altering the traditional
systems development life cycle. Notation was made of the various
factors affecting software development and their impact.
Primary among these factors were manpower, time- sensitivity,
early error detection, software maintenance, user satisfaction
and lack of overlap of the phases. The next chapter will analyze
this information and determine how it might be used to alter the
systems development life cycle.

15

Chapter Four

ALTERING THE SYSTEMS DEVELOPMENT LIFE CYCLE

This chapter will draw some general conclusions from the
information presented in the previous chapter and then use those
conclusions as stepping stones to examine ways in which the
systems development life cycle might be altered.

4. RESULTS OF ANALYSIS

The Pattern of Cost Curves

The total cost curve of the traditional systems development
life cycle follows a consistent and set pattern. It starts high,
peaks during the design and coding phase, becomes downward
sloping through implementation, and has a steady climb in the
maintenance phase. The cost curve of each individual phase also
follows a similar pattern, although the first five phases
(requirements definition through integration) do not demonstrate
the dramatic support tail of the maintenance phase.

No Phase Overlap

Under the traditional systems development life cycle each
phase is done sequentially, in a more or less stand-alone mode.
There is very little, if any, overlap. Delays in one phase often
have an adverse affect on subsequent phases.

Impact of Change

Software development is a dynamic process, with many factors
subject to change. In many cases change has an adverse impact on

-. -- the development process; usually requiring more manpower, time,
and money be allocated for project completion. Ch-anges are often
a function of longer development time and overall system
dynamiticity.

High Cost of Late Changes

Delays are primarily a result of errors or changes in the
system design and coding. The costs associated with making
changes can be rather dramatic, especially in the latter phases
of the life cycle process.

16

Development Time

Simulation models show that errors in estimating the
development time (which determine project cost) are subject to a
greater error when the project is larger and takes more time.
Manpower, resources, and time are allocated based on estimates
made of the development life cycle.

Software Maintenance

Software is not maintained like most products. It does not
dilapidate or deteriorate, nor does it require preventive or
remedial maintenance.

Maintenance Costs

Maintenance costs comprise an ever increasing portion of the
total system cost. The longer a system exists the greater the
maintenance costs will be, both on a per year basis and as a
percentage of total costs. Reducing maintenance costs can
greatly reduce total system costs.

Time Sensitivity

Time control is imperative in all phases of software
development. Reducing development time will provide greater
stability as well as a wide variety of cost benefits. It can
reduce change and turmoil, decrease manpower requirements, and

* improvement cost estimates.

* Error Detection

Catching errors or making changes early in the life cycle
process is cheaper than doing it in the latter phases.
Additionally, error detection often occurs out-of-phase, with
errors that occur in early stages not being detected until the
latter stages of development.

* Proficiency

"V..'Higher proficiency, lower programming team turnover, and
lower user turnover will reduce development time and errors,
while decreasing total system costs.

Program Size

Reducing program size (lines of code) reduces the amount of
* manpower required to complete the project, the time required, and

total program costs. Reducing the size of the program also
increases the accuracy of both the time estimates and total
project cost estimates.

17

ALTERING THE TRADITIONAL SYSTEM DEVELOPMENT LIFE CYCLE

The above conclusions, as well as studies by Joseph Fox,
Mitre, and TRW, have shown that something must be done to improve
the productivity and timeliness of the software development
process (2:--; 16:--; 17:--). Each offered some possible
solutions to these problems and ways in which system efficiency
might be improved. One area is the use of systems development
tools. Another is the use of automated code generation, which
has speeded up the coding process and in many cases the
maintenance function. In the author's opinion, however, the
optimal solution is the use of a modular design. Modular design
consists of dividing a software system into smaller blocks of
processes or modules, each of which evolves through the six
phases of the traditional life cycle. While one module, capable
of functioning in a stand-alone mode, would have fewer functions
than the entire product of the traditional approach, it would
provide the same capabilities and functions as the original
system when all modules are developed and functioning together.

THE MODULAR APPROACH

To more completely understand and visualize what modular
design is refer to Figure 5.

PART 1: TRADITIONAL SYSTEM LIFE CYCLE
REQUIREMENTS X ---- X
SPECIFICATIONS X ----- X
DESIGN/CODING X ----------- X
TESTING X ----- X
INTEGRATION X ----- X
IMPLEMENTATION X ------ X

PART 2: MODULAR LIFE CYCLES
REQUIREMENTS X-X X-X X-X
SPECIFICATIONS X-X X-X X-X
DESIGN/CODING X--X X--X X--X
TESTING X-X X-X X-X
INTEGRATION X-X X-X X-X
IMPLEMENTATION X--X X--X X--X

PART 3: MODULAR/OVERLAPPED LIFE CYCLES
REQUIREMENTS X-X X-X X-X
SPECIFICATIONS X--X X--X X--X
DESIGN/CODING X--X X--X X--X
TESTING X-X X-X X-X
INTEGRATION X--X X--X X--X
IMPLEMENTATION X--X X--X X--X

-" FIGURE 5. LIFE CYCLES DEPICTED

18

Part 1 is a Gantt chart depiction of the traditional systems
development life cycle (it is a reproduction of Figure 3). Under
this approach, as was described earlier, each step is done in
sequence, with little or no overlap. Again, the possibility
exists that delays in any one phase could result in delays in all
subsequent phases. Parts 2 and 3 are Gantt chart illustrations
of two possible modular life cycles. For purposes of this
discussion, each project is divided into three modules. In real
life situations there could be a multitude of modules, but the
results would be basically the same. An assessment of modular
design by Donald Latham, the Assistant Secretary of Defense for
Command Control Communications and Intelligence, shows it is
possible to break projects up into smaller modules and complete
them under the basic guidelines set above (10:185).

In modular approach number one (Figure 5, Part 2: Modular
Life Cycles), the project is divided into modules, with each
module going through its own life cycle. This part is the same

* as under the traditional approach. Each phase is completed
before the next is started, and the next module is not started
until the previous one is completed. The time to completion of
the last module (and consequently the entire project) is
approximately the same as under the traditional approach. The
first two modules, however, are completed and implemented well
before the final product of the traditional life cycle approach
is implemented. Therefore, this approach offers the end user
some capabilities earlier than he would have had them under the
traditional life cycle approach.

Under the second modular approach (Figure 5, Part 3:
Modular/overlapped Life Cycles), the project is again divided
into modules, with each module going through its own life cycle.
Under this approach, however, the next module is started prior to
the completion of the previous module. In this case, the modules
overlap such that the requirements definition of the next module
is started when the design/coding phase for the previous module
is completed. With this approach the entire project (all three
modules) is completed in less time than is required for the
entire project under the traditional life cycle approach. The
modularity of this approach permits the overlap, whereas the
structure of the traditional life cycle does not.

The techniques of modular programming are not new (where
various parts of a program are developed in modules, but not
meant to operate in a stand alone mode); however, the concept of
modular design is. The very fact that it is new does create a
few problems within the Air Force. Higher levels of management
are not always known for their innovativeness and willingness to
try new approaches. A large number of Air Force programs,
however, appear to be perfectly suited to this modular approach.
Since most Air Force software programs have a multiplicity of
functions and often work at various levels, they could be easily
broken down into modules. By prioritizing the various functions
within the system being developed, programmers and project

19

managers could very easily institute modular design.
Additionally, modular design could make reprogramming a much
easier task as changing one module would have very little impact
on other modules.

SUMMARY

To achieve the high rates of productivity, with the wisest
allocation of dollars and manpower, it is imperative the
traditional systems development life cycle be altered. The
demand for increased time control, reduction of system changes,

* -, early detection of errors, reduced program size, reduction of
maintenance costs, and higher proficiency rates all show the Air
Force needs to reevaluate the process it uses to develop
software. As was discussed, one such way to accomplish this is
to use a modular design. Either of the two modular approaches
presented solves many of the previously discussed problems and
shortfalls. Additionally, they provide a degree of flexibility
not possibly attained under the traditional systems development
life cycle. The next chapter will highlight the benefits of
altering the traditional life cycle and for using a modular
design.

420

4.-,.

Chapter Five

* BENEFITS OF USING AN ALTERED SYSTEMS DEVELOPMENT LIFE CYCLE

From the Gantt charts and discussion provided in the
* previous chapter, it is readily apparent there are several

distinct benefits which result from using a modular design. The
reductions in both time and manpower are especially significant.
Additionally, there are several other benefits (both tangible and
intangible) that can be accrued through the use of either of
these two modular designs. The purpose of this chapter is to
evaluate these benefits and to assess the impact they might have
on the traditional software development process.

IMPACTS OF USING A MODULAR DESIGN

Reduced Manpower Costs

Manpower trade-off laws show that time and effort (manpower)
are coupled and that small changes in development time can result
in very large changes in effort (6:16). In the case of using a
modular design, reductions in time will greatly reduce manpower
and create a substantial cost savings. Time reductions, in and
of themselves, also generate cost savings.

Impact. More personnel will be available for other
projects, therefore, increasing productivity as well as
organizational flexibility. In many cases the manpower factor is

*of greater concern than the dollars saved, as there may not
always be additional manpower available. The associated cost
savings will mean more dollars will be available to spend in
other areas, or perhaps more significantly, a program may be
funded when it might otherwise fail to make the funding cut.

Reduced Development Costs

Modularity leads to a commonality of design, which in many
cases leads to a reduction in the total lines of code. John
Snyders found that using a modular design (in two smaller
programs) reduced the total lines of code by 15-25 percent
(11:46). Reducing the number of lines of code can have a
dramatic effect on reducing costs. Software cost equations show
that reducing the lines of code by just 10 percent yields costs
reductions of up to 27 percent from the original system price
(6:7).

21

%7* 2 -, -A 4-R- k I-

impact. More dollars will be available to spend in other
critical areas. Additionally, the cost of future maintenance
might also be reduced. Maintenance could be limited to the
module in question, thereby eliminating some of the ripple effect
which naturally occurs as one change generates additional
changes. Reducing development costs also means that the economic
point of redevelopment occurs sooner. More frequent
redevelopment is consistent with, and often triggered by, other
industry advances in hardware and software.

Reduced Chance Of User Turnover

By reducing the elapsed time between requirements definition
and implementation, it is implicit that the amount of user
turnover will be reduced. It is much more likely that individual
users who participated in the requirements definition and
specifications phases will be present during delivery of early
modules.

Impact. The training effort is minimized; testing is
enhanced; implementation time is reduced; and conversion is
smoother. Individuals who helped define why a system was
required are more likely to be present, which increases the
likelihood of user satisfaction.

Reduced Chance Of Programming Team Turnover

By reducing the elapsed time prior to product delivery, the
project leader reduces the amount of team turnover. On projects
that could take several years (total time for the entire project)
the Air Force assignment process induces a certain amount of team
turnover. Using a modular approach could permit team members to
work a module from start to finish, thus providing programming
continuity.

Impact. Frustration levels triggered by training are
reduced, proficiency is increased, and productivity is increased;

* while acquaintance and bonding with co-workers and user personnel
can be maximized.

* Reduce(Chance Of User Management Turnover

Through accelerated product delivery, the software project
leader is less likely to encounter new user management, and the
increased possibility that they might want to make changes.

Impact. Project direction and philosophy changes are less
J. likely to occur, will generally be smaller in scope and scale,

and are usually less significant. Programming time and costs are
kept on schedule and turmoil, as a result of change, is kept to
a minimum.

22

Reduced Anaysi O Non-Implemented Requirements

The traditional approach usually requires that requirements
be defined for all foreseeable system contingencies. In the
course of the development process these are often altered enough
to rule the original study effort worthless. In a large number
of cases they are not implemented at all. The modular approach
requires analyzing only those requirements necessary for the
module being developed, with future modules incorporating
changes or new options.

Impact. The defining of only those requirements to be
implemented into system components will contribute to a higher
level of worker productivity, will lead to reductions in both
manpower and time, and will reduce system complexity.

Quickened Development Feedback To The User

Accelerating the rate at which some components of the system
are delivered will allow the end user more time for adjustment.
Since some components developed under the modular design approach
could be delivered years ahead of those developed under the
traditional approach, the user community will get hands on

* experience much earlier. Additionally, the user could have a
direct impact on modules still being developed.

Impact. Partial system introduction, which comes about as a
result of the modular approach, leads to a gradual user

*acceptance of the system and a general building of user
*confidence in the system being developed. The user only has to

learn the system module being introduced; contrasted with the
more or less bombshell approach of the traditional life cycle.
Additionally, one of the the biggest drawbacks of the traditional
approach is that the end user often has to wait until the very

.5 end of the development effort to discover the final product is
not what he or she requires or that it does not do the things it
was expected to do. The changes brought about as a result of

* these last minute corrections can be very expensive as well as
time consuming. A final result of the modular approach could Le
the generation of greater user satisfaction.

SUMMARY

With the costs of computer software rapidly dominating the
costs of military electronic systems, altering the traditional
systems development life cycle may be one of the only viable

* options available to tomorrow's software programmers to increase
productivity. The modular design approach will provide both

* tangible and intangible benefits to the Air Force, as well as a
unique ability to take advantage of the dynamic environment
encountered in high technology. The increased cost effectiveness
and product quality of the modular design will ultimately lead tc
enhanced readiness for tomorrow's Air Force.

23

Chapter Six

CONCLUSIONS AND RECOMMENDATIONS

The "smart" systems of today's Air Force derive their IQs
from their software. Software has proven to be crucial to a
multitude of systems; from precision-guided munitions to the
advanced combat aircraft and its fully integrated avionics suite.
None can effectively operate without it, yet these systems and
others like them may go into decline for future lack of good
software and software professionals. Hardware may be readily
available, but the software to exploit its superior capabilities
may be lagging dangerously behind. The net resilt could be
another system "outdated" before it is fully delivered and

* operational. As the range of computer applications has grown and
the complexity of tasks increased, the cost of developing
software has increased dramatically; so much so that software is
in many cases the costliest component of the entire system.
Almost every new electronic system the Air Force is developing is
planning on software to help it function; yet, few people
consider the efforts it takes to get that software. Some will be
sorely disappointed at how long it might take.

In the early days of computer programming the usual
assumption was that the work to be done was a simple product; a
result of constant manpower over a scheduled period of time.

* Today, however, computer programming is extremely complex and
more times than not is characterized by cost and time overruns.
Unless productivity goes up and costs come down, there will be
grave consequences for future Air Force capabilities. it is for
these reasons the traditional systems development life cycle must
be altered and a modular design incorporated. The remainder of
this study consists of a summarization of those conclusions the
author considers the most significant and some recommendations on
how this modular (altered) design can be implemented in Air Force
software programs.

CONCLUSIONS

1. Using an altered systems development life cycle, in this
case a modular design, will dramatically reduce total systems
development costs for Air Force software programs. Since studies
on smaller programs using modular design revealed total lines of
code could be reduced by 10-25 percent (with a 10 percent
decrease yielding cost savings of up to 27 percent), it is felt
total cost savings of 10-15 percent could be attained using a

24

modular design. Therefore, the hypothesis that altering the
traditional systems development life cycle will provide economic
benefits to the Air Force, is considered valid.

2. The modular design approach can be incorporated in a
5/large number of Air Force software projects and programs. The

reductions in cost and manpower can have a pronounced and timely
effect on the successful accomplishment of many programs. It is
possible the use of a modular design could permit some programs
to be successfully completed when they might have otherwise been in
jeopardy.

3. A major modification to one module does not render the
entire program unusable; instead, portions of code can be moved
in and out of the same source program with less difficulty than
in non-modular programs.

4. Modular programming fosters modular testing, which
inturn facilitates the testing of independent program modules
prior to program completion. Discovering significant design
flaws as early as possible and not during traditional system
release is extremely crucial. The cost of rework is trivial in
the early stages of development (as would occur under a modular
approach) when compared with making changes late in the life
cycle, as often occurs in the traditional life cycle.

5. Modular design offers many intangible benefits (such as
reduced turnover, reduced analysis, and quicker feedback) which
greatly enhance the productivity and quality of Air Force
software programs. These types of improvements are hard to
quantify, but may be just as important as the manpower, dollar
and time savings which can be quantified.

RECOMMENDAT IONS

1. The benefits of modular design should be shared with the
higher levels of Air Force management, particularly those which
oversee the development of Air Force software programs.

2. The Air Force should utilize a modular (altered) systems
development life cycle wherever possible.

a. Current on-going programs should be evaluated for
possible utilization of the modular approach.

b. Future programs should be evaluated for possible
utilization of the modular approach; basing manpower and time
estimates, as well as system costs on modular design parameters.

3. The Air Force should develop a training program to teach
modular design. This training should be conducted for all
programmers, software project managers, and systems analysts.

25

.... _ BIBLIOGRAPHY
.9.

A. REFERENCES CITED

Books

1. Cotterman, William W. (ed), et al. Systems Analysis and
Design: A Foundation for the 1980s. New York: North
Holland, Inc., 1981.

2. Fox, Joseph M. Software and Its Development. Englewood
Cliffs, New Jersey: Prentice-Hall, Inc., 1982.

A 3. Gujarati, Damodar. Basic Econometrics. New York: McGraw-
Hill Book Company, 1978.

J.,. 4. Larr, L., et al. Planning Guide for Computer Programming

Development. Santa Monica, California: Systems
Development Corporation, 1965.

5. Martin, James T. An Information Systems Manifesto.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc.,
1983.

6. Putnam, Lawrence H. Software Cost Estimating and Life-Cycle
Control. New York: The Institute of Electrical and
Electronics Engineers, Inc., 1980.

Articles and Periodicals

7. Boehm, B. W., et al. "Some Experience With Automated Aids
to the Design of Large-Scale Reliable Software."
IEEE Transactions on Software Engineering, Vol. SE-i,
No.1 (March 1975), pp. 125-133.

8. Canan, James W. "The Software Crisis." Air Force Magazine,
(May 1986), pp. 46-52.

9. Daly, Edmund. "Management of Software Development."
IEEE Transactions on Software Engineering, Vol SE-3,
(May 1977), pp. 230-242.

10. Latham, Donald C., and David R. Israel. "A Modular

Building-Block Architecture." Signal, (May 1986),
pp. 185-202.

26

.5.'-
[5.

CONTINUED -

11. Snyders, J. "Slashing Software Maintenance Costs."
Computer Decisions, Vol ii No. 7, (July 1979)

pp. 44-50.

Official Documents

12. AFR 700-1, Managing Air Force Information Systems, 2 March

1984.

13. AFR 700-4 (Volume I), Information Systems Program
Management and Acquisition - Information Systems Program
Management, 15 March 1985.

14. Department of Defense. Software Technology for Adaptable,
Reliable Systems (STARS) Program Strategy. Washington,
D.C., 15 March 1983.

15. General Accounting Office Report FGMSD-80-4. Contracting
for Computer Software Development--Serious Problems
Require Management Attention to Avoid Wasting Millions.
Washington, D.C., Novemeber, 1979.

16. Mitre Corporation. Software Acquisition Management
-A Guidebook. Beford, Massachusetts, 1978.

'W'. 17. TRW Systems. A Software Acquisition Guidebook. Redondo

Beach, California, Novemeber 1978.

'Unpublished Materials

18. Hughlett, Eric C., Lieutenant Commander, USN. "A Framework
for Software Development," Unpublished master's thesis,
Naval Postgraduate School, Monterey, California,
Septemeber, 1984.

19. Klemas, Gary H., Major, USAF. "Software Maintenance Cost
Estimating." Research study prepared at the Air Command
and Staff College, Report 83-1325, Air University (AU),
Maxwell AFB, Alabama, 1983.

27

Tr

CONTINUED
20. Norden, Peter V. "Project Life Cycle Modelling: Background

and Application of the Life Cycle Curves." Working
Papers of the Software Life Cycle Management Workshop,
Airlie, Va., August 21-23, 1977, sponsored by US Army
Computer Systems Command, pp. 217-306.

21. Swanson, E. B. "Software Maintenance." Proceedings of the
Second International Conference on Software Engineering,
UCLA, 1976, p. 492.

B. RELATED SOURCES

Books

Athey, Thomas H. Systematic Systems Approach, An Integrated
Method for Solving Systems Problems. Englewood Cliffs,
New Jersey: Prentic-Hall, Inc., 1982.

Software Engineering. Reading, Massachusetts: Addison-

Wesley Publishing Company, 1982.

McClure, Carma L. Managing Software Development and Maintenance.
New York: Van Nostrand Reinhold Company, 1981.

Articles and Periodicals

DeRoze, Barry C. and Thomas H. Nyman. "The Software Life Cycle."
Signal, (November-December 1977), pp. 5-8.

Fagan, M. E. "Inspecting Software Design and Code." Datamation,
(October 1977), pp. 133-135.

Ingrassia, Frank S. "Combating the '90% Complete' Syndrome."
Datamation, (November 1977), pp. 171-174.

Patrick, R. L. "Software Engineering and Life Cycle Planning."
Datamation, (December 1976), pp. 21-27.

Rogers, Michael. "Software Makers Battle the Bugs." Fortune,
(February 17, 1986), p.83.

28

-. *. .-"

ap.

* "-".. -" CONTINUED

Official Documents

Air Force. Air Force Systems Command. A Review of Software Cost
Estimation Methods. Hanscom AFB, Massachusetts, 1976.

Rand Corporation. Software Reliability: Philosophy
Underpinnings. Santa Monica, California, 1974.

Unpublished Materials

Castle, Steve G., Maj, USAF. Software Reliability: Modelling

Time-to-Error and Time-to-Fix. Unpublished master's
thesis, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB, Ohio, 1978.

.29

99

'9

J

I,

'p

1%

1%

Ii..

~I'I

- .. 9jJ ~ 'p.%.% '.99'. %~~%* ~ '5 '.. 4. 5'.~*5 ~.- I '5 *.1 9~.- '99- 5 'p1,5

